In search quality optimisation, various techniques are used to improve recall, especially in order to avoid empty search result sets. In most of the solutions, such as spelling correction and query expansion, the search query is modified while the original query intent is normally preserved.
In my talk, I shall describe my experiments with different approaches to query relaxation. Query relaxation is a query rewriting technique which removes one or more terms from multi-term queries that would otherwise lead to zero results. In many cases the removal of a query term entails a change of the query intent, making it difficult to judge the quality of the rewritten query and hence to decide which query term should be removed.
I argue that query relaxation might be best understood if it is seen as a technique on the border between search and recommendations. My focus is on a solution in the context of e-commerce search which is based on using Word2Vec embeddings.